LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2025

PST 2501 - ESTIMATION THEORY

Date: 24-04-2025	Dept. No.	Max. : 100 Marks
Time: 01:00 PM - 04:00 PM		

SECTION -A

Answer any FOUR of the following

 $4 \times 10 = 40 \text{ Marks}$

- 1. If δ_1^* is a UMVUE and δ_2^* is bounded UMVUE then show that δ_1^* . δ_2^* is also UMVUE.
- 2. State and prove Rao-Blackwell and Lehmann-Scheffe theorems.
- 3. Let $X_1, X_2,...X_n$ be a random sample of size n from $U(0,\theta)$, $\theta > 0$. Obtain a sufficient statistic for θ .
- 4. Show with an example each that MLE is not sufficient and unique.
- 5. Let $X_1, X_2,...X_n$ be a random sample of size n from $f(x;\theta) = \exp\{-(x-\theta)\}$, $x \ge \theta$, zero elsewhere. Find UMVUE of θ .
- 6. Let the following table

	<u> </u>						
Х	0	1	2	3	4	5	
f	6	10	14	13	6	1	

represent a summary of a sample of size 50 from a binomial distribution having n = 5. Find the MLE of $P(X \ge 3)$.

- 7. (a) Establish the invariance property of CAN estimator.
 - (b) Let $X_1, X_2, ... X_n$ be a random sample from $N(\theta, 1)$, $\theta \in \mathbb{R}$. Find a consistent estimator for θ . (5+5)
- 8. Explain Jackknife and Bootstrap resampling methods.

SECTION-B

Answer any THREE of the following.

 $3 \times 20 = 60 \text{ Marks}$

- 9. State and prove the necessary and sufficient condition for an estimator is UMVUE using the uncorrelated approach.
- 10. State and prove Cramer-Rao inequality after stating the regularity conditions.
- 11. Let $X_1, X_2, ... X_n$ be a random sample of size n from $N(\mu, \sigma^2)$, where μ and σ^2 are unknown. Find UMVUE of (i) μ (ii) σ^2 and (iii) μ^2/σ^2 . (5+5+10)
- 12. Let $X_1, X_2, ... X_n$ be a random sample from $N(\theta, 1)$, $\theta \in R$. Show that sample mean and variance are independent after proving Basu's theorem.
- 13. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$, $\mu \in R \& \sigma^2 > 0$. Find M.L.E. of (i) μ when σ^2 is known (ii) σ^2 when μ is known and (iii) $\theta = (\mu, \sigma^2)$ when μ and σ^2 are unknown.
- 14. Let $X \sim U(0, \theta)$, $\theta > 0$. Assume that the prior distribution of θ is $h(\theta) = \theta \exp(-\theta)$, $\theta > 0$.

Find Bayes' estimator of θ if the loss function is (i) squared error and (ii) absolute error.

\$\$\$\$\$\$\$\$\$\$\$\$\$